Phone

+86-17720330692

Chemists redesign biological PHAs, 'dream' biodegradable plastics
Home » Insights » Chemists redesign biological PHAs, 'dream' biodegradable plastics

Chemists redesign biological PHAs, 'dream' biodegradable plastics

Views: 0     Author: Site Editor     Publish Time: 2023-03-20      Origin: Site

Inquire

facebook sharing button
twitter sharing button
line sharing button
wechat sharing button
linkedin sharing button
pinterest sharing button
whatsapp sharing button
sharethis sharing button

But there's a reason PHAs haven't taken off as a sustainable, environmentally benign alternative to traditional plastics. Crystalline PHAs are brittle, so not as durable and convenient as conventional plastics. They cannot easily be melt-processed and recycled, making them expensive to produce.

Colorado State University polymer chemists led by Eugene Chen, University Distinguished Professor in the Department of Chemistry, have created a synthetic PHA platform that addresses each of these problems, paving the way for a future in which PHAs can take off in the marketplace as truly sustainable plastics.

Chen and colleagues report a new class of redesigned PHAs, readily accessible via chemical catalysis, in the journal Science.

The researchers had been searching for a strategy to address the intrinsic thermal instability of conventional PHAs; their lack of heat resistance also makes it difficult to melt-process them into end products. The CSU chemists made fundamental changes to the structures of these plastics, substituting reactive hydrogen atoms responsible for thermal degradation with more robust methyl groups. This structural modification drastically enhances the PHAs' thermal stability, resulting in plastics that can be melt-processed without decomposition.

What's more, these newly designed PHAs are mechanically tough, even outperforming the two most common commodity plastics: high-density polyethylene -- used in products like milk and shampoo bottles -- and isotactic propylene, which is used to make automotive parts and synthetic fibers. The best part is that the new PHA can be chemically recycled back to its building-block molecule, called a monomer, with a simple catalyst and heat, and the recovered clean monomer can be reused to reproduce the same PHA again - in principle, infinitely.

"We are adding three key desired features to the biological PHAs, including closed-loop chemical recycling, which is essential for achieving a circular PHA economy," Chen said.

The work was supported by the Department of Energy's BOTTLE Consortium.


Get A Free Quote

For more detailed information on our company or products, please feel free to contact us at any time, welcome your inquiries, and look forward to further cooperation with you.

Contact us

About Us

Wuhan Ninety Thousand Lithium Industry and Trade Co., Ltd is a renowned pharmaceutical manufacturer. We can offer high quality products at competitive price in quick delivery with 100% custom pass guaranteed.

Company

Product Category

Contact Us

Tel: +86-17720330692

E-mail:niyoe@protonchem.cn

Threema ID: DA4UTK6D

WhatsApp: +86-17720330692  

Telegram: +86-17720330692

Copyright © 2021.Wuhan Ninety Thousand Lithium Industry and Trade Co., Ltd. All Rights Reserved.  Supported By Leadong  Sitemap